home / lesson_6

user_features

50,000 rows

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: sex, region

Link rowid ▼ user_id age income sex account_number region
1 1 75722 38 8167.938254870597 female 388438 Johor
2 2 80185 45 9248.619970862055 female 459698 Johor
3 3 19865 37 8411.459176020137 female 68756 Selangor
4 4 76700 32 6473.53667562122 male 275739 Melaka
5 5 92992 27 4307.9812529390865 male 262947 Melaka
6 6 76435 35 7259.459880787823 male 261704 Melaka
7 7 84005 58 13841.76501960145 female 400686 Negeri Sembilan
8 8 80918 35 7358.090367940746 male 366787 Pahang
9 9 60768 36 9295.861562011776 male 342605 Selangor
10 10 50075 30 5124.804815629925 female 492557 Melaka
11 11 27702 41 9681.659763110783 male 385002 KL
12 12 42142 45 10607.064528045594 female 258092 Negeri Sembilan
13 13 45081 35 7750.839649236331 male 365760 Negeri Sembilan
14 14 16639 50 11416.354340027381 female 306590 Pahang
15 15 20425 35 7308.742105424372 male 405408 KL
16 16 88703 38 7152.629677760854 male 205651 Negeri Sembilan
17 17 150 36 7742.193360198004 male 226772 Melaka
18 18 1762 44 9653.525145002453 male 435556 Negeri Sembilan
19 19 63121 39 8300.017640447775 male 261029 Melaka
20 20 69162 58 12766.190534587762 female 57032 Pahang
21 21 64884 38 7691.602887123694 female 427304 Negeri Sembilan
22 22 2496 53 13580.028167219622 male 27212 Negeri Sembilan
23 23 80297 40 9214.498305631074 female 270595 Pahang
24 24 19448 45 10453.668803546474 male 112111 Johor
25 25 41332 31 5008.605169922975 male 9163 Johor
26 26 14889 42 8052.786038429094 male 369720 Johor
27 27 88637 33 6947.993299833225 male 229301 KL
28 28 94893 42 10715.198675502787 female 229529 Negeri Sembilan
29 29 92732 46 9183.026388037444 male 442501 Johor
30 30 29131 35 7735.945178945252 male 394149 Selangor
31 31 79023 32 5607.764663742659 female 352698 KL
32 32 84937 35 6724.4572340399345 male 151508 Johor
33 33 16822 39 8199.976925175544 female 478388 Negeri Sembilan
34 34 36734 47 11800.9484160633 female 201265 Selangor
35 35 15603 32 7061.23993407949 female 434492 Selangor
36 36 28534 52 9084.131422170714 male 453790 Pahang
37 37 69770 59 13850.055838313981 female 215718 Negeri Sembilan
38 38 11406 32 6617.986857128074 male 62098 Johor
39 39 96853 50 11346.915382986721 female 411506 Pahang
40 40 16131 51 13598.140579565725 female 255296 KL
41 41 19793 46 9339.491799791434 female 484966 KL
42 42 89578 55 15044.16348541451 female 260657 Melaka
43 43 40164 34 7845.472404297901 female 24274 Melaka
44 44 31777 44 10289.112757275598 male 308558 KL
45 45 25331 42 10763.188473293965 male 152833 Melaka
46 46 79157 49 9421.373810102143 male 52387 Melaka
47 47 51686 38 7718.833070100219 male 4874 Negeri Sembilan
48 48 75499 38 7994.749863284099 female 175198 Selangor
49 49 4728 33 6340.127259701382 male 47208 Johor
50 50 85199 33 6818.093822216859 female 381057 KL
51 51 35796 49 13178.679957246075 female 274045 Negeri Sembilan
52 52 12257 45 11197.472902006397 female 167866 Negeri Sembilan
53 53 35719 30 6382.23066365723 male 296042 Negeri Sembilan
54 54 70552 63 15591.865196489827 male 345528 Negeri Sembilan
55 55 54375 34 5803.2946896936355 female 171929 KL
56 56 39692 44 9428.034425452768 female 85941 Johor
57 57 93703 19 1630.481419404685 female 474466 Melaka
58 58 73692 37 7729.732365780465 male 346743 Melaka
59 59 98071 30 6328.542478939378 female 286948 KL
60 60 576 41 9798.759183438524 male 154498 Pahang
61 61 84611 47 7709.3173628332515 male 44898 Melaka
62 62 61770 44 10036.588525622281 male 330969 Melaka
63 63 32261 56 16121.024856234337 female 11320 Pahang
64 64 82200 38 7838.5221282351695 female 145259 Negeri Sembilan
65 65 36291 35 7008.521295381627 male 79512 Johor
66 66 78450 29 6528.832149879811 female 287037 Pahang
67 67 60056 35 7150.365374940643 female 263063 Johor
68 68 45949 31 5461.3225359064045 male 14831 Melaka
69 69 28178 41 10929.877261086425 male 150240 Selangor
70 70 84464 31 6947.799534644505 female 6357 Melaka
71 71 579 51 9490.907334241505 female 395517 Selangor
72 72 30960 40 9635.331266861114 male 465707 Pahang
73 73 64291 38 7287.548950391513 male 244954 Pahang
74 74 14532 53 12923.915895618202 male 393654 Selangor
75 75 17934 56 12326.525100640727 male 200837 Negeri Sembilan
76 76 33609 40 7822.932053650861 female 411285 Johor
77 77 49960 39 9320.38045461841 female 458935 Melaka
78 78 66599 53 14344.605795104135 female 376636 KL
79 79 99090 49 12591.189924042417 male 267291 Pahang
80 80 34452 30 4746.38359022726 female 463447 Melaka
81 81 34081 41 11122.24225683231 female 282055 Melaka
82 82 63588 35 7780.428784634014 female 271069 Negeri Sembilan
83 83 4294 35 6958.657605891996 male 305816 KL
84 84 69103 37 9192.571073475641 female 443643 Negeri Sembilan
85 85 86412 42 9658.435259887588 female 219052 Negeri Sembilan
86 86 99477 37 7829.555440053158 male 223740 Melaka
87 87 53930 39 6665.715644234435 female 21485 Johor
88 88 87071 49 11176.068384592973 male 402060 Pahang
89 89 65084 41 9250.03071828475 female 0 Selangor
90 90 30713 28 5431.920813109122 male 137780 Selangor
91 91 49183 24 3758.886321718104 female 330283 Selangor
92 92 57235 34 8215.053200213815 male 281312 Melaka
93 93 15664 50 10155.01902074389 male 168895 Johor
94 94 19967 40 7486.998104665347 male 277400 Melaka
95 95 91913 31 6306.686405645489 female 346454 Pahang
96 96 91958 39 9975.711185757364 female 297850 Selangor
97 97 81347 36 7117.711725882287 male 404833 Melaka
98 98 55326 37 9336.062750832309 male 147781 Johor
99 99 29858 39 8272.117365871456 female 440366 Johor
100 100 71223 47 10601.190109456991 female 278862 Melaka

Next page

Advanced export

JSON shape: default, array, newline-delimited

CSV options:

CREATE TABLE "user_features" ("user_id" INTEGER, "age" INTEGER, "income" DOUBLE, "sex" VARCHAR, "account_number" INTEGER, "region" VARCHAR);
Powered by Datasette · Queries took 319.553ms